
Automation, Patching and Insights

Why hope is not a Strategy

Chris Milsted
Principal Solution Architect, Financial Services

cmilsted@redhat.com

1

mailto:cmilsted@redhat.com

2

● Disruption in the industry - technology
● Current state - Traditional Operations
● Application trends - what the developers are doing
● Broken Paradigms
● SRE - Why?
● The New Normal
● Predictive Analytics - how it can help
● Putting it all together
● Q&A

Agenda

Red Hat Navigator

 3

4

Disruption in the industry

 5

6

7

8

9

1 physical server 10 Virtual Machines 100 Containers

1 Monolithic application 1 application - 10
environments

1 app in 100 pieces

Health = binary Health = binary Health = complex

10

State of play today
Traditional Operations

11 Photo via Visual Hunt

https://visualhunt.com/re/0bce6b

12

Applications are changing
Micro-Services

13

14

15

http://www.youtube.com/watch?v=MYHf_BXWuOc

16

Broken Paradigms

17

18 Photo credit: Michel Curi via Visualhunt / CC BY

https://www.flickr.com/photos/119886413@N05/33808858285/
https://visualhunt.com/re/d2fa6d
http://creativecommons.org/licenses/by/2.0/

19

SRE - Why?

20

21

Without constant
engineering, operations
load increases and teams
will need more people just
to keep pace with the
workload. Eventually, a
traditional ops-focused
group scales linearly with
service size: if the products
supported by the service
succeed, the operational
load will grow with traffic.
That means hiring more
people to do the same tasks
over and over again.

22

 Embracing Risk. It looks at SRE
through the lens of risk—its
assessment, management, and the
use of error budgets to provide
usefully neutral approaches to
service management.

 Eliminating Toil. We define
toil as mundane, repetitive
operational work providing
no enduring value, which
scales linearly with service
growth.

If you can’t monitor a
service, you don’t know
what’s happening, and if
you’re blind to what’s
happening, you can’t be
reliable.

Running reliable services
requires reliable release
processes. Site Reliability
Engineers (SREs) need to
know that the binaries and
configurations they use are
built in a reproducible,
automated way so that
releases are repeatable and
aren’t “unique snowflakes.”

Software systems are inherently
dynamic and unstable.38 A software
system can only be perfectly stable
if it exists in a vacuum. If we stop
changing the codebase, we stop
introducing bugs. If the underlying
hardware or libraries never change,
neither of these components will
introduce bugs. If we freeze the
current user base, we’ll never have
to scale the system. In fact, a good
summary of the SRE approach to
managing systems is: "At the end
of the day, our job is to keep
agility and stability in balance in
the system."39

https://landing.google.com/sre/book/chapters/embracing-risk.html
https://landing.google.com/sre/book/chapters/eliminating-toil.html
https://landing.google.com/sre/book/chapters/simplicity.html#id-BWDujIehq
https://landing.google.com/sre/book/chapters/simplicity.html#id-MJbuJtOhb

23

The New Normal

So we made the developers do CI/CD…
Now it is our turn

Rotate - RePave - Repair

Let’s Melt the Snowflakes

24

Monday

Tuesday

Wednesday

Thursday

25

Red Hat CDN

Internet

27

Predictive Analytics

Robotic Process Automation

28

29

30

Putting it all together

31

1. Do some realistic planning about your target availability for systems. 100% is not
realistic. Consider your “Disruption Budget”

2. Work out your strategy; Suggestion would be Rotate, Repave and Repair
3. Select your tooling…. As this is at the Red Hat Forum it will be Ansible + Satellite +

Insights!
4. Work out your CI/CD pipeline and what needs to be centralised.
5. Plan Metrics and Logging as the first thing to get working.
6. Automate everything. Remember Logs are for root cause analysis. Alerts and tickets

should be what you use to run a system.
7. Leverage Predictive Analytics.

Steps

Compare to OpenShift

32

33

34

35

QCOW2
AMI
VHD
VMDK

CI/CD testing

36

● We also need a threshold and alerting engine - Metrics as a Service
● We also need a stream processing enging - Logging as a Service

Here is the critical bit….
Remember - nobody should be looking at raw logs and raw metrics

37

Automate Everything

38

39 Photo via Visual Hunt

https://visualhunt.com/re/dd0ce9

https://developers.redhat.com/blog/2016/10/24/how-we-automate-everything-at-red-hat-open-innovation-labs/

http://www.opensourcerers.org/learning-by-prototype-bringing-ansible-tower-openshift-cloudforms-and-insights-together/

https://access.redhat.com/articles/3119481

https://developers.redhat.com/blog/2016/07/07/carving-the-java-ee-monolith-into-microservices-prefer-verticals-not-layers/

https://builttoadapt.io/the-three-r-s-of-enterprise-security-rotate-repave-and-repair-f64f6d6ba29d

http://www.ofbizian.com/2017/05/bet-on-cloud-native-ecosystem.html

40

https://developers.redhat.com/blog/2016/10/24/how-we-automate-everything-at-red-hat-open-innovation-labs/
http://www.opensourcerers.org/learning-by-prototype-bringing-ansible-tower-openshift-cloudforms-and-insights-together/
https://access.redhat.com/articles/3119481
https://developers.redhat.com/blog/2016/07/07/carving-the-java-ee-monolith-into-microservices-prefer-verticals-not-layers/
https://builttoadapt.io/the-three-r-s-of-enterprise-security-rotate-repave-and-repair-f64f6d6ba29d
http://www.ofbizian.com/2017/05/bet-on-cloud-native-ecosystem.html

41

Q&A

